Max Flow with
_evel Graphs

CMSC 641 Design & Analysis of Algorithms

QE‘@L let £ be a flow \.V\ o Qooo nelwork G,
The \evel /Mg{ge‘:_ LGQ S a breac\%\ G &t earch
Gyooh ok the residual gmen G i back edaes
Z sidewoys’ edges deleted. (Cross edqes
Lom level 1 b level A4\ ane kegt.) '

Modified Edwonde—Karp
Givan: Qow hebwork G=(V,E) and ¢ E—->K
Ml Slew =0
Construct resdual gqmeh Gt

\gy Conetruct level h LGg
R/ (\f t is net reachavle from =, stee,)

Add poth Llow of any shorlest g in LG

UWpdate copacities (n LG, deldlh salurcied edges

Updo&c S (Z Qﬂw.ﬂ

\ Repeot unil + & Az commected Geous (Wocking o
'Repgo:\" |

$
¢
N

Deln: Lex Sg'C&bﬁ-"mm se@\m}m(dirlance &“cswx atob in G,

e

LQMWb.l ’L(: «Q \s ob*amd .Qmmﬁ bé augw\en—h\/\g Ay
sWortest pethe, then W aeV

S¢(a.t) £ $¢' (a,1) amd Se(sa)s g(/(s_.,a)
(Proven last iws)

L%ma‘- lex £ be the wnew {lzo after o phase ™
stacted & Limo £ Then, S¢'(s0) 2 Se(st)+\,

Pl let ad=S¢(s,t) |
n LGQ’, here must be a pita fom s =T
W detace zd, (By lemma W a=<)
Some eohe, UV on i padh WMust wg be v LG¢
 SAPU—P N A~
Swee sherwee, Hu phase did wst ad ¥ a bocking Clo
'mus, (WV) WMust bve a $Tol€‘~°°“¢s oc a back edge
Wi BFs of LG 3 $¢ (sw) 2 Segsv).
2¢'(s) 2 S/ (s,W) +) + Sg/vt)

Z S (S + SV, t) +)
Z 565Vt SL(vit)+ | ,
2 d+l swee Vaev, d4 8;(s,a)+g{. (a,t) i

’RU\V\V\\V\Q Hme ior : Edvnm-ka&p
[ikin Gach Teration:
- O(E) fime b Gnd an augmenhng. patia
— O(®) Yime Lo updales

ot eratdvs pec phase 8 O(€)
- each Veratidn satwrates & deleles ledge
- Vel & Q.\E.\e

4 of Phases <lv) ,
= Sglst) Mowsses by 1 altin each phace

Totad cunnivg e O(VE>) % O(V*)

DMIC’S a‘%bﬁ'\'km: Civd med p Lo msvwwvh\'a_
Pa;hg,s &’D Seve 3n‘m

Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph Lg. Set u := s and p := s]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u,v) be such an edge. Set p:=p- [v] and u := v. If v # ¢ then go
to Advance. If v = ¢ then go to Augment. \

Retreat. If u = s then halt. Otherwise, delete u and all adjacent edges
from Lg and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment Let A be the bottleneck capacity along p. Augment by the
path flow along p of value A, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from s along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.

al Whw
»
‘ A\%o
&'(DV\TC,{S
' wWe.
Eo.cé:lE\lh

s ¢ I

\aim |

] \akes

YL

wode
a‘-
CUMLA

>

k <

hee
X %Ve;m fom

R e Sl

et (‘;\;

\ \
)-
“ G)‘Q
@
C,‘hBV\
"&Q
Dm
:
idﬁr
’ LAY)
co

Consider poeninl Lumchon = (&) 2(6)-p)

Tnikiolize: O(VE) omorkized hwe
Advance 1 \p\ mcreases by 4, B decreases by i
Owortized fwe = O

Kevreat: of least 1 edge wemoved, which Erees
up () cudis. Mso ol reduced loy 4.
Vous for cost ol cewmovina edges.

Auﬁmem(':' af Roast 4 edse Pemoveal,%\\/w& n(&) credik,
@ouag (o up daking, Copacbies & 5"'0"*3“4“3- e.

okl time for Omnics alg OWE)x IV] phases
= O(V*&) & O(v*)

Ma\\\ or \, Pr 'amaje;\»\; Kumar, Maheshwari
ON®) hme alg. makhes bestallg W tert bock:
Uses Floonace: heaps, easiec ' oxplain
Uges LG¢ as lefore.

w_ @pac(’«a {o¢ veafces

Yac (uv)

?%- | Z Cv,v)

Cop(V)=min kzc (w), Z.¢ Lv,u)\

1. Find a vertex v of minimum capacity d | according to Definition

2.

18.2. If d = 0, do step 2. If d # 0, do step 3.

Delete v and.all incident edges and update the capacities of the
neighboring vertices. Go to 1.

. Push d units of flow from v to the sink and pull d units of flow

from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,

leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro-
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to ¢, since every vertex has capacity at least d.

Pull from scurce. The incoming edges of v are saturated in or-

der, leaving at most cne partially saturated edge. All cdges
that become saturated by this process are deleted. This pro-
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow

all the way back to s, since every vertex has capacity at least
d.

Either al! incoming edges of v or all outgoing edges of v are satu- |
rated and hence deleted, sc v and all its remaining incident edges
can be deleted from the leve} graph, and the capacities of the neigh-
bors updated. Go to 1.

i
¢

AMerzeel lime pec phase
O(E‘rV) ‘o conshruct LG(. Mtha\ize \/\QD.O

O legV) for V| delete wiw's

O(E) b celele saturaked edses &
errm Oecreaseken ow allecled vecier

~ (00) ke bo decrea ey i R Heap)
\% “vieis” ' partially Glled edges

- 4 edge peC wode BN wearixn

— & o Weratizne £ W\ since ame verbes deleted

- upo\a\e edge capactres & verkex capacities
(decrezss ke) v OQ) ameh hwae .

Twe e prase: (V) el e OWV?)

