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Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph Lg. Set u := s and p := s]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u,v) be such an edge. Set p:=p- [v] and u := v. If v # ¢ then go
to Advance. If v = ¢ then go to Augment. \

Retreat. If u = s then halt. Otherwise, delete u and all adjacent edges
from Lg and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment Let A be the bottleneck capacity along p. Augment by the
path flow along p of value A, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from s along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.
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1. Find a vertex v of minimum capacity d | according to Definition

2.

18.2. If d = 0, do step 2. If d # 0, do step 3.

Delete v and.all incident edges and update the capacities of the
neighboring vertices. Go to 1.

. Push d units of flow from v to the sink and pull d units of flow

from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,

leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro-
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to ¢, since every vertex has capacity at least d.

Pull from scurce. The incoming edges of v are saturated in or-

der, leaving at most cne partially saturated edge. All cdges
that become saturated by this process are deleted. This pro-
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow

all the way back to s, since every vertex has capacity at least
d.

Either al! incoming edges of v or all outgoing edges of v are satu- |
rated and hence deleted, sc v and all its remaining incident edges
can be deleted from the leve} graph, and the capacities of the neigh-
bors updated. Go to 1.
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